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It is well known that the concept of a trajectory of a quantum particle is itself 
nonsense in the so-called "Copenhagen" interpretation. However, if the inter- 
pretation proposed by Ishikawa [International Journal of  Theoretical Physics, 
30(4), 401 (1991)] can be accepted in quantum mechanics, the trajectory of a 
quantum particle is significant (though it includes errors). In this paper we 
numerically analyze discrete trajectories of a quantum particle in a two-slit 
experiment under this new interpretation. 

1. INTRODUCTION 

It is well known that the concept of  a trajectory of  a quantum particle 
is nonsense in the so-called "Copenhagen" interpretation. However, if the 
interpretation proposed by Ishikawa (1991b) can be accepted in quantum 
mechanics, the (discrete) trajectory of  a quantum particle is significant 
enough (though of  course it includes errors). Now we briefly explain this 
new interpretation, which gives the foundation to analyze a discrete trajec- 
tory of  a quantum particle in numerical analysis. 

Let V be a Hilbert space with the inner product ( . ,  ")v. (X, ~ ,  F)  is 
called a projection-valued probability space if it is provided with a projec- 
tion-valued probability F on a complete separable metric space X (with a 
Borel field ~ ' )  in a Hilbert space V such that: 

(a) For  every E ~ ,  F(E)  is a projection in Vsuch that F ( ~ )  = 0 and 
F ( X )  = I, where 0 is a 0-operator and I is an identity operator in 
V. 
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(b) For any countable decomposition {E:}~=l of E (E~., E ~ ) ,  
F(E) = ~ = ~  F(E:), holds where the series is weakly convergent. 

Projection-valued probability space was firstly introduced in quantum 
mechanics by Davies (1976), who chiefly investigated positive-operator-val- 
ued probability space as a generalization of projection-valued space. In this 
paper, we shall use the projection-valued probability spaces as the mathe- 
matical model of observables. So a projection-valued probability space 
(X, ~ ,  F) is also called an observable in V in this paper. Note that any 
self-adjoint operator A in V has a spectral representation A = ~R 2 EA(d.~ ) 
(see, e.g., van Neumann, 1932, and Prugovetki, 1981). So we sometimes 
identify the self-adjoint operator A with the observable (R, ~,  EA), where 

is a Borel a-field on a real field R. 
Let r be a (pure) state of a system S in a Hilbert space V, that is, ~0 ~ V 

with Ilffllv = 1. Let (X, ~-, F) and (Y, fr G) be observables in V. Put 

~(~r.~.o) = { E e l [  G(F)F(E)P(F.q,) = F(E)G(F)P(F,~,) (VFeff)} 

where P(F.q,) -- "the projection on the smallest closed subspace that contains 
{F(E)O]EE~}." It is clear that ~r .~ ,a)  is a a-subfield of ~ such that 
(X, ~'~o,,~.o),F) and (Y, fg, G) commute with respect to q/, that is, 
G(F)F(E)~ =F(E)G(F)~b holds for all Fe~q and = ~ r , ~ , o ) .  When 
(Y, if, G) [=(R,  ~ ,  EA)] is an observable representing a self-adjoint opera- 
tor A [i.e., A = ~a 2 Ea(d2)], we sometimes write ~-~ instead of ~(~a,~,e~). 

Remark 1. We have another proposal about ~r ,~ ,o)  (Ishikawa, 1992) 
as follows. Let ~r = {~o[~o is a-subfield of ~ such that F(E)G(F)~k = 
G(F)F(E)r (VEe"~ ~ YF~ff)}. It is easily shown that ~r has a maximal 

- ~.r 
element. So we can also define a o-subfield ~ r , < a ) a s  ~(r ,~.6)= 
(-] {.~~176 is a maximal element of ~ }. Even if w e  u s e  this :(~,,~,~)instead 
of .~ ~r,<o), all arguments in this paper hold as for ~ ~r,~,o). 

We define a conditional probability p~,(x, F), or precisely, #6(x, F: 
(X, ~'~r.~,a), F), (Y, ~, G)) that satisfies the following conditions: 

(a) For each F (e~),  #q,(x, F) is ~-(~r.<G)-measurable as a function of 
x and 0 -< #~,(x, F) < 1, and for each x (EX),  #r .) is a proba- 
bility measure on (Y, ~). 

(b) For each ~(r function f:  X ~ R  and F ~ ,  

The existence and uniqueness (in some sense) of #~,(x, F) were assured in 
Ishikawa (1991b) and Ash (1972). So the following symbolic representation 
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of #~, (x, F) is available for our arguments in this paper: 

#~(x, F: ~ '  (O, F(E)G(F)@>v (X, ~" (v.~.o), F), (Y, fr G)) = lira (1) 
z-~ (@, F(E)r >v 

~(~Y,f~,G) ~ X  

Axiom 2 (Born's probabilistic interpretation and generalized Copen- 
hagen interpretation). Let ~k be a state of a system S in a Hilbert space V. 
Let (X, ~ ,  F) and (Y, f~, G) be any observables in F. Then: 

(i) The probability that Xo (EX), the measurement value obtained by 
the measurement of the observable (X, ~ ,  F) for this system S, belongs to 
a set E ( ~ )  is given by <~, F(E)~b>v. 

(ii) When we get xo (eX)  by the measurement of the observable 
(X, ~ ,  F) for this system S, the probability that .v0 ( e Y), the "true" value 
of the observable (Y, if, G) for this system S, belongs to a set F (el#) is 
given by #g,(x0, F: (X, ~'(y.~,6), F), (I1, ~, G)). 

Now we have the following definition. 

Definition 3 (Approximate simultaneous measurement in average 
sense and its average error). Let H be a Hilbert space with the inner 
product <., ">H. Let A0, A, . . . . .  AN-,  be any physical quantities (i.e., 
self-adjoint operators) in a Hilbert space H. A quartet M =  
(K, v, (X, ~-, F), f = (fo . . . . .  fN- , ) )  is called an approximate simultaneous 
measurement of {Ak }~'--o ~ in H if it satisfies the following conditions: 

(i) v is an element in a Hilbert space K such that [[V]lK = 1, and 
(X, ~ ,  F) is an observable in a tensor Hilbert space H | K and f :  X ~ R ~ 

is a measurable map. 
(ii) Put Ak = SXfk(X)F(dx) (k = 0, 1 , . . . ,  N - 1); then, for each k, a 

set Dv(Ak) ( =_ {u ell:  u | v ~ D(Ax), the domain of -~k }) is a core of Ak, 
i.e., Ak is essentially self-adjoint on D~(Ak). 

(iii) For each k, <u, AkU>H = <U | Ak(U @V)>H| (Vu~Dv(Ak)). 
Then, 5M(Ak, U), the kth average error in the measurement M with 

respect to a state u (~H),  is defined by 

u, F 
where #,| dO is defined as in Axiom 2. Also, {g~(Ak, u)}~-_-o 1 is called 
an average error in the measurement M with respect to a state u. 

The approximate simultaneous measurement was first introduced in 
Davies (1976), Holevo (1982), etc. If  we accept Axiom 2, the average error 
in the measurement M is naturally derived (Ishikawa, (1991b). We note 
that the existence of some approximate simultaneous measurement of 
{Ak}t~__-o 1 is proved in Abu-Zeid (1987) or Ishikawa (1991a) in detail. 
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Furthermore, in the particular case N = 1, Ishikawa (1991b) has proved the 
following Heisenberg uncertainty relation under some conditions: 

6M(A0, u)" 6M(A,, u) >- KA,u, Aou) - (Aou, AlU)[/2 (3) 

2. ANALYSIS OF TRAJECTORIES IN TWO-SLIT EXPERIMENT 

In this section, we shall analyze a discrete trajectory of a quantum 
particle under the interpretation mentioned in Axiom 2. The main ideas 
have been mentioned in Ishikawa (1991b). We develop the ideas of Arthurs 
and Kelly (1965) and She and Heffner (1966). 

We shall consider a particle P in the one-dimensional real line R, 
whose initial state function is u ( x ) s H - L E ( R ) .  Since our purpose is to 
analyze the discrete trajectory of the particle in the two-slit experiment, we 
choose the state u(x) as follows: 

u(x) = l/w~2 , x ~ (  -3 /2 ,  - 1/2) u(1/2,  3/2) 

=0,  otherwise (4) 

Let A be a position observable in H, that is, (Av) (x)=xv(x)  for 
v(x) ~H =- LE(R). We treat the following Heisenberg kinetic equation of the 
time evolution of the observable A, ( - ~ < t < ~ )  in a Hilbert space H 
with a Hamiltonian ale = -(h2/2m)02/0X2: 

dAt 
- i h - ~ = d / t O A t - A t d / t  ~ - o o < t < o o ,  w h e r e A o = A  (5) 

Put 0 > 0 and N > 2 (integer). Now we consider the approximate simulta- 
neous measurement M of self-adjoint operators {Aok }kS---01 for a particle P 
with an initial state u(x). An easy calculation shows that 

ht d 
A, = U_tAUt = U_txU t = x +im dx (6) 

where the one-parameter unitary group Ut is defined by e x p ( - i h - i o ~ t ) .  
Let 

V = H | 1 7 4  H = ( ~  H = L 2 ( R  N) and Ut: ~ e t 
1 k = O  k = O  

N - - I  ~ 0  Let akn (k, n = 0, 1 , . . . ,  N -  1) be real numbers such that ~'.n = 0 ~kn~ln 
(k # l) and ~ko = l (Vk). Define self-adjoint operators Aok (k = 
0, 1 , . . . , N -  1) in V [--L2(RN)] by 

A0k = ~k, x, + - -  (7) 
n = o im 

It is clear that -'lok (k = 0, 1, 2 , . . . ,  N -  1) commute. Also, for each k 
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(k = 0, 1, 2 , . . . ,  N - 1), Aok and Aok | I [ -- Xo + (hOk /im) 3 /Oxo] commute. 
Let if'Ok be the spectral measure of  Aok [i.e., Aok = SI~ 2Eok(d2)]. From the 
commutativity of  {ff'Ok}~=d (i.e., {A0k}U--d), we can define an observable 
(X, ~ ,  F)  = (R N, 9~ N, F)  in V such that 

N - - I  

r ( ~ o  • Ex •  • EN_ ~) = 1~ /~ok(Ek) 
k = 0  

Put v(xl . . . . .  xu_l)  =vl(xl) "'" vu_I(XN_I)~L2(R u - l )  ( _ K ) ,  where 
V(Xk) is defined by, for k = 1 . . . . .  N - 1, 

Vk(Xk) = exp -- 2 [C0k(>0) is decided afterward]. (8) 

It is easy to show that [IVkllL:(m=l (i.e., ]lv[IK=l) and 
SRXklVk(Xk)t2dxk = 0 .  Put f k : X  ( - - R ~ R  (k = 0 ,  1 . . . . .  N -  1) such 
that fk(xo . . . . .  xu_ j) = Xk. Note that AOk = Sxfk(x) F(dx). 

It was shown in Ishikawa (1991b) that M = (K, v, (X, ~ , F ) ,  f =  
(fo . . . . .  f v - ~ ) )  defined above is an approximate simultaneous measure- 
ment of  {Aok }~v=o~ in H. Moreover, from the properties of  the observables 

^ N - - I  {Aok }k=o and the state u |  we can easily show the following equality 
(k = 0 ,  1 . . . . .  N -  1): 

~-u| e~Nl~Po~(~n) = 0 or I, if n r k ~" Aok| = Ek (9) 
I.k=0 

Therefore, #,| d~) in Axiom 2 is given by, for k = 0, 1 . . . .  , N - 1, 
A 

# , |  lira (u |  Eok(Ek)Eaok|174 (10) 
- ~ x ~  (u|174 

where x = (xo . . . . .  xu_ l )~R  u. 
Note that the probability that the measurement value x =  

(Xo . . . . .  x u _ j )  obtained by the measurement M belongs to a set 
E o • 2 1 5  is given by 

u|  ff~Ok(Ek)(U| (11) 
k = 0  

Also, when we obtain the measurement value x = ( X o , . . . ,  xu_  ~) by the 
measurement M, it is considered that the expectation ~ = (~o . . . .  , f lu-1)  
of  the " t rue"  value ~ = (Xo . . . . .  ~N- ~) of the observable Aok | I (k = 
0, 1 . . . . .  N -- 1) for the state u | v is given by 

Y~k(X) -- fR r174 dr (X, O-r" Aok| F), Aok | I) 

= lira ~ ( u |  ff.ok(Ek)Eaok|174 (12) 
~_~-, ~x~ J~ (u | v, P~ok('~Du | v) 
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Note that (2) and (10)- (12)  can be numerically calculated. So we can 
know the discrete trajectory of the quantum particle P. Of  course, this 
trajectory can be considered to be a reasonable one that can be inferred 
from the results of  the measurement M. 

3. N U M E R I C A L  RESULTS 

In this section, we numerically analyze the trajectories of  a particle in 
a two-slit experiment under the theory constructed in the previous section, 
and give some numerical results. For  simplicity, we suppose that him = 1, 
and we fix T = O(N - 1) = 1/4. 

First we numerically calculate the time evolution of  the state 
u(t,x) =exp(- ih-laf f t )u(x)  ( - o o  < t < oo). The graphs of lu(0,x)t =, 
lu(T/2, x)l =, and lu(T,x)l = are presented in Fig. 1. We investigate the 
trajectories of  a particle in the cases that N = 2 and N = 3. 

3.1. The Case That N = 2 (i.e., 0 = 1/4) 

For this case we easily get (also see Ishikawa (1991b)) 

= I~0,1(2m,)  - , / 2  = I~0, I 
(2o91)'/2 

&(Ao,  u) = [~,I'[~Ii (xl  - iO o~l)vl(Xl) 2dXl] 112 

-3 -2 - 1 0 1 2 3 

I~(TI2, x) l ~ 

-8 
lu(T,,)? 

- 3  

i 
-2 -i 0 I 2 3 

•  

-2 -1 0 I 2 3 

Fig. 1. The time evolution of the state u(t, x) = exp(-ih -l~t)u(x). 
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Note that ~o1.~11 = - 1 ,  since (Zoo=t~lO -~- 1. Then we can set ~oo = 1, 
cq0= 1, ~01 = 2 ,  and ~11 = - 1 / 2 .  

For  co~ = 4, 16, and 64, the values of  6M(Ako, U) (k = 0, 1) are shown 
in Table I. 

Note that the Heisenberg uncertainty relation (3) holds in all cases, 
that is, 6M(Ao, u) . 6M(Ao, u) > 1/8. 

We put the intervals in R at each time t = kO (k = O, 1 , . . . ,  N -  1), 

~ o = [ - 3 + ( i - 1 ) / 4 , -  3 + (i/4)), ( i =  1,2 . . . . .  24) 

For  i, j = 1, 2 . . . .  ,24 and k = 0, 1, we numerically compute the probabil- 
ity that the measurement value x = (Xo, x~) obtained by the measurement 

"~i M belongs to a set -0 x E~. These probabilities can be computed from (11). 
And we can calculate the expectations fk(x) of the " t rue" value 2k(X) from 
(12). 

Figure 2 shows the numerical results of  (11) for each cn~ = 4, 16, and 
64. In Fig. 2, we connect EL and -=+ by [r + (1/2)] lines, where [.] is the 
Gauss symbol and 

r = lO0(u | |  (13) 

Figure 2 should be viewed with the following considerations: 

(a) The average error between the measurement value xk(x) and 
" t rue"  value 2k(r~) is ~ ( A ~  u) (k = 0~ 1). Therefore, the measure- 
ment value is sometimes outside of  the two slits at t = 0. 

(b) The " t rue"  value is produced by measurement M. So this is not 
the true value in the classical sense. 

Figure 3 shows the numerical results of (12) for ~o~ = 4, 16, and 64. 
Whenever [r + (1/2)] -> 1, we draw a line between fro(X) at t = 0 and f l (x )  
a t t = T i n F i g .  2. 

It is no wonder that sometimes we have fro(X) outside of  the slits, since 
fr0(x) is not the " t rue"  value 2o(X), but its expectation. 

Table I. The Values of  Average Error {6M(Ako, u)}~ =o for Co I > 0 

m t 6m(A o, u) gM (Ao, u) 

4 0 .707 . . .  0 .250 . . .  
16 0 .353 . . .  0 .364 . . .  
64 0 .176 . . .  0 .708 . . .  
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wz =4 

= 1/4 ~,{ 5o #- 0.250 

t = 0  _ ~  SLIT _ � 8 9  ~ SLIT ~ =-~ 5o-0.707 

~1 = 16 

I } 4  I I 
t = l  

I l l [  
t = 0  

i ~ I I  I I I t I I 

a SLIT - 3  - 3  

$ l I I I l I I I I I 

=~ 5o # 0.364 

I L I I I I 
�89 SLIT ~a -~ 5o#0.353 

Fig. 2. 

wl = 64 

I I I [ 
t = 1/4 

t=O 

J I J J ( I ) J J I I I ~ I ~ 
-{ 6o # 0.708 

I I I ~ I ! I I I I 
a SLIT t 1 SLIT 3 E~ 5o ~-0.176 

The representation of the joint distributions of the measurement values at t = 0 and 
t = T for various ~0t. 

3.2. The Case That N = 3 (i.e., 0 = 1/8) 

N o w  we set 01ol = -011, = 1.35, 0[02 ~---0112 = - 0 . 9 0 9 ,  012! = 0, 0[22 ~ - - - 1 . 1 ,  

and o), -- (.D E m 5. Then 

(t0[o 12 + t0[o212y 
XM(Ao, , )  = = 0 . 5 1 4 . . .  

& , ( A o ,  u) = ' l~ 

F o r  L j ,  h = 1, 2 , . . . ,  24 and k = 0, I, 2, we similarly calculate the proba- 
bility (11) that the measurement value x =(xo, x,,x2) obtained by the 
measurement M belongs to a set -~  x ~ x ~ 0  and the expectations ~k(X) 
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w I = 4  

r -  i ""1' 

t = 1 /4  

I I l 

t = 0  

I I I I I I 

3 S L I T  . S L I T  

I I I I 

~ i  6e ~ 0 250 

I I  I 1 _  

xo 60 ~ 0.707 

~1 = 16 

t = 1 /4  

L_I I 

t = 0  3 S L I T  _! 

~ '] I t I I 

"~1 66 # 0.364 

S L I T  i ~o 60 - 0 .353 1 3 

wl = 64 

I t 1 

t = 1/4 

I J 1 . ,  

t = O  

i ' i l I I ~ I I 
�9 i 60 #-0.708 

I r I I I I 

~o 6o @ O. 176 

Fig. 3. Plots of the lines among the expectation values 2 k of "true" values ~k for time t = 0 
and t = T (i.e., k = 0, 1). 

o f  the " t r u e "  value 2k(x) f rom (12). W e  shall  s imulate  the exper imenta l  
measu remen t  o f  a par t ic le ' s  pos i t ion  as i f  by  rol l ing a die which has  the 
p robab i l i t y  in (11). F igure  4 shows these s imula t ions  repea ted  five t imes. 
The  ob ta ined  t ra jector ies  are n u m b e r e d  f rom 1 to 5. Accord ing  to the 
expec ta t ion  values 20 at  t = 0, ~l at  t = T/2, and  22 at  t = T o f  the " t r u e "  

W l = W 2 = 5  

, . . . . . . . .  ~ . t \ ,  , , I / \  . . . . .  y . . . . . .  
t = 1/4 ~ 2 X ~  4 a.~ 6o - 0.556 

" . . . .  ' . . . . . . . .  ~ . . . . . .  = ;  ' ' ~ '  . i o 6  t 

I l r 8 1  f I I I ~, ~ I 

= 0 _~ SLIT _ �89 �89 SLIT ~ -:~ 6 o ,  0514 

Fig. 4. Plots o f  the five trajectories obtained by three-point  measurements  for a particle's 
posit ion.  
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~1 ~r = 5 

i i 

t = 1 /4  

i i 

t = I/8 

F I 

t=0 3 SLIT i i SLIT a 
--~ -_~ ~- 7 

I i 

i b 

i i 

62o #- 0.556 

60 --~ 0.606 

q I__ 
5o # 0.514 

Fig. 5. The modified trajectories as the expectation values of "true" values. 

values, we connect the three points {(2,, t = k0)}~=o by a line in Fig. 5. 
The obtained lines are numbered corresponding to the trajectories in 
Fig. 4. 

4. CONCLUSIONS 

In this paper we have numerically analyzed discrete trajectories of a 
quantum particle in two-slit experiments under the interpretation proposed 
by Ishikawa (1991b, 1992). The numerical results obtained in this paper 
can be considered to be natural and show some justification of this 
proposal. Of course, we think that more arguments are needed in order to 
justify this interpretation. 
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